В вашем браузере отключен JavaScript. Из-за этого многие элементы сайта не будут работать. Как включить JavaScript?

Урок математики в 5 классе «Сложение и вычитание дробей с разными знаменателями»




Урок математики в 5 классе в технологии деятельностного метода

«Сложение и вычитание дробей с разными знаменателями» (урок открытия новых знаний)

Ильина И.Ю., учитель математики Негосударственного образовательного учреждения

«Средней общеобразовательной школы № 23 «Менеджер» г.Альметьевска, РТ


Цель урока: построить алгоритм сложения и вычитания дробей с разными знаменателями, тренировать способность к его практическому использованию

I.Самоопредение к учебной деятельности

Формируемые УУД:

Личностные: самоопределение, смыслообразование

Познавательные: целеполагание

Коммуникативные: планирование учебного сотрудничества

Цель: включить учащихся в учебную деятельность; определить содержательные рамки урока (продолжение работы с обыкновенными дробями)

©Перед началом урока хочу предложить вам старинную суфийскую притчу «Делёж верблюдов»

Живший некогда Суфий хотел сделать так, чтобы ученики после его смерти нашли подходящего им учителя Пути. Поэтому в завещании, после обязательного по закону раздела имущества, он оставил своим ученикам семнадцать верблюдов с таким указанием: «Разделите верблюдов между самым старшим, средним по возрасту и самым младшим из вас следующим образом: старшему пусть будет половина, среднему — треть, а младшему — одна девятая».

Когда Суфий умер, и завещание было прочитано, ученики вначале были изумлены таким неумелым распределением имущества Мастера. Одни предлагали: «Давайте владеть верблюдами сообща»; другие искали совета и затем говорили: «Нам советовали разделить способом, наиболее близким к указанному»; третьим судья посоветовал продать верблюдов и поделить деньги; а ещё некоторые считали, что завещание утратило свою законную силу, поскольку его условия не могут быть выполнены.

Спустя некоторое время ученики пришли к мысли, что в завещании Мастера мог быть какой-то скрытый смысл, и они стали расспрашивать повсюду о человеке, который может решать неразрешимые задачи. К кому бы они ни обращались, никто не мог помочь им, пока они не постучали в дверь Хазрата Али, зятя Пророка. Он сказал:

Вот вам решение. Я добавлю одного верблюда к этим семнадцати. Из восемнадцати верблюдов вы возьмете половину — девять верблюдов — для старшего ученика. Второй ученик возьмет треть — то есть шесть верблюдов. Третий получит одну девятую — двух верблюдов. Это как раз семнадцать. Остался один — мой верблюд, он вернётся ко мне.

Вот так ученики нашли себе учителя.

©Какой серьёзной темой мы начали заниматься в этой четверти? (обыкновенными дробями)

© Чему мы уже научились? (сокращать дроби, отмечать их на координатном луче, приводить к НОЗ, НОЧ, сравнивать дроби с разными знаменателями)

©Как вы думаете, куда дальше в изучении дробей мы продолжим продвигаться? (мы должны научиться производить с ними арифметические действия).

II.Актуализация знаний и фиксация затруднений

Формируемые УУД:

Познавательные: анализ, сравнение, аналогия, использование знаковой системы, осознанное построение речевого высказывания, подведение под понятие

Регулятивные: выполнение пробного учебного действия, фиксация индивидуального затруднения, волевая саморегуляция в ситуации затруднения

Коммуникативные: выражение своих мыслей, аргументация своего мнения, учёт разных мнений учащихся

Цель: 1) актуализировать учебное содержание, необходимое и достаточное для восприятия нового материала: основное свойство дроби, приведение дробей к одинаковому знаменателю, сложение и вычитание дробей с одинаковыми знаменателями;

2) актуализировать мыслительные операции, необходимые и достаточные для восприятия нового материала: сравнение, анализ, обобщение;

3) зафиксировать все повторяемые понятия и алгоритмы в виде схем и символов: в виде свойств и определения;

4) зафиксировать индивидуальное затруднение в деятельности, демонстрирующее на личностно значимом уровне недостаточность имеющихся знаний: сложить и вычесть дроби с разными знаменателями.

© А начнём мы как всегда с устной работы, потому что чтобы узнать что-то новое …(необходимо повторить уже изученный материал)

  1. Сократите дроби: , , ,

  2. Выделите целую часть из дробей: , , ,

  3. Дан ряд дробей: , , ,

Что мы можем о нём сказать?

К какому НОЗ можно привести все дроби? Почему? (к 24, т.к. 24 – НОК всех знаменателей)

  • Приведите все дроби к знаменателю 24. Прочитайте получившейся ряд чисел.

  • Установите закономерность и продолжите ряд на 2 числа.

  • На какие группы можно разбить множество чисел этого ряда? (правильные и неправильные, сократимые и несократимые, однозначные и двузначные числители, в разряде единиц числителя 3 и 8 и т.д.)

  • Найдите сумму и разность дробей. Если потребуется, сократите дроби и выделите целую часть: (письменно)

  • + ; ;

  • А каким правилом сложения и вычитания дробей вы воспользовались? Запишите его в общем виде для дробей и .

© Т.е. алгоритмом сложения и вычитания . Давайте восстановим алгоритм сложения и вычитания дробей с одинаковыми знаменателями: (выкладываем на доске)

Нам с вами вразброс даны части алгоритма по сложению и вычитанию дробей с равными знаменателями. Работая в парах, обсудите 30 секунд, восстановим алгоритм по шагам.

1.Суммой (или разностью) дробей является дробь

2.Сложить (или вычесть) числители и записать ответ в числитель суммы (или разности)

3.Знаменатель оставить без изменения, записав его в знаменатель суммы (или разности)

4.Если возможно, сократить полученную дробь и выделить и нее целую часть

© Хорошо. Следующее задание: выполните действия: + ; + . Предлагаю поработать в группах. Ваши результаты не забудьте прикрепить на доску. Время выполнения: 5 минут.

(После завершения работы защита своих работ)

III. Выявление места и причины затруднения

Формируемые УУД:

Познавательные: анализ, сравнение, обобщение, подведение под понятие, постановка и формулирование проблемы, построение речевого высказывания

Регулятивные: волевая саморегуляция в ситуации затруднения

Коммуникативные: выражение своих мыслей, аргументация своего мнения, учёт разных мнений, разрешение конфликтной ситуации

Цель: 1) организовать коммуникативное взаимодействие, в ходе которого выявляется и фиксируется отличительное свойство задания, вызвавшего затруднение в учебной деятельности;

2) согласовать цель и тему урока.

Почему у вас получились такие разные ответы, как выяснить, кто выполнил задание правильно, а кто-то совсем не дали ответы, Чем отличается предыдущее задание, с которым вы все хорошо справились от этого? (В предыдущем задании дроби были с одинаковыми знаменателями, и у нас был алгоритм сложения и вычитания таких дробей, а в последнем задании у дробей разные знаменатели.)

Что же нам надо сделать, чтобы выполнить задание, определить, кто его выполнил правильно? (Надо найти способ нахождения суммы и разности дробей с разными знаменателями, построить для таких дробей алгоритм сложения и вычитания.)

Сформулируйте цели урока. (Построить алгоритм сложения и вычитания дробей с разными знаменателями, научиться выполнять действия по построенному алгоритму.)

Хорошо! Чтобы продолжить работу, надо записать тему урока, что мы запишем в тетрадь? (Сложение и вычитание дробей с разными знаменателями.)

Запишите тему. (На доске открывается тема урока.)

IV. Построение проекта выхода из затруднения

Формируемые УУД:

Личностные: самоопределение, смыслообразование

Познавательные: анализ, синтез, обобщение, аналогия, самостоятельное выделение и формулирование познавательной цели, поиск и выделение необходимой информации, проблема выбора эффективного способа решения, планирование, выдвижение гипотез и их обоснование, создание способа решения проблемы

Регулятивные: волевая саморегуляция в ситуации затруднения

Коммуникативные: выражение своих мыслей, аргументирование своего мнения, учёт разных мнений, планирование учебного сотрудничества со сверстниками, достижение общего решения.

Цель: 1) организовать коммуникативное взаимодействие для построения нового способа действия, устраняющего причину выявленного затруднения;

2) зафиксировать новый способ действия в знаковой, вербальной форме и с помощью эталона.

Задания парам следующее: дополнить известный алгоритм шагом или шагами, чтобы можно было по нему выполнить сложение и вычитание дробей с разными знаменателям и показать на предложенных примерах, как он действует. У каждой группы на столе таблички из старого алгоритм и несколько чистых листочков. На работу отводится 7 минут.

Все варианты вывешиваются на доску и проводится обсуждение.

© Результатом обсуждения является алгоритм сложения и вычитания дробей:

1.Суммой (или разностью) дробей является дробь

2.Привести дроби к НОЗ, найти дополнительные множители

3.Сложить (или вычесть) числители и записать ответ в числитель суммы (или разности)

4.Знаменатель оставить без изменения, записав его в знаменатель суммы (или разности)

5.Если возможно, сократить полученную дробь и выделить и нее целую часть


© Вернёмся к нашим выражениям и найдём их значения, используя полученный алгоритм: (будьте внимательны при оформлении задания)

а) + =

1. приведём дроби к наименьшему общему знаменателю, НОК (3,8)=24

2. дополнительный множитель для первой дроби равен 8, для второй дроби – 3.

3. складываем числители, знаменатель оставляем без изменения. Дробь неправильная, выдели из неё целую часть.

б) + = 1 (самостоятельно)

В математике нельзя пропускать ни одного слова в некоторых правилах. Общий знаменатель и наименьший общий знаменатель не всегда совпадают.

Послушайте притчу об одном мэре.

Когда ещё не было электричества, мэр одного города любил вечером гулять по городским улицам. Как-то он столкнулся с одним горожанином, у него на лбу выскочила шишка. На следующий день он издал указ: “В тёмное время суток на улицу выходить с фонарём”. А вечером на него налетел тот же горожанин. Мэр потребовал у него фонарь.

- Вот, - сказал прохожий.

- А где свеча? – спросил мэр.

- А в указе не написано, что в фонаре должна быть свеча, - ответил тот.

Мэр издал второй указ: “В тёмное время суток на улицу выходить с фонарём со свечой”.

В третий день история повторилась.

Мэр уже вышел из себя.

- Думаете, что ответил мэру прохожий?

В приказе не написано, что свеча фонаря должна быть зажжена.

Мэру пришлось издать указ третий раз, только после этого прохожий оставил его в покое.

Поэтому наша задача – хорошо знать алгоритм и уметь его применять.

V. Первичное закрепление во внешней речи

Формируемые УУД:

Личностные: осознание ответственности за общее дело

Познавательные: выполнение действий по алгоритму, построение логической цепи рассуждений, анализ, обобщение, подведение под понятие

Коммуникативные: выражение своих мыслей, использование речевых средств для решения коммуникационных задач, достижение договорённости и согласование общего решения

Цель: зафиксировать изученное учебное содержание во внешней речи.

© Ученики решают у доски, используя алгоритм (обратить внимание на проговаривание)

197 (в, е)

в)

Приведём дроби к НОЗ, для этого найдём НОК (5; 7)

НОК (5; 7) = 35

Дополнительный множитель первой дроби 7, второй дроби 5

=

Применим алгоритм сложения дробей с одинаковыми знаменателями, складываем числители, знаменатели оставляем без изменения

= =

Дробь неправильная, выделим из неё целую часть

е) Проводим аналогичные рассуждения

197 (г, ж) – работа в парах, после выполнения проводится самопроверка по образцу. (записано на обороте доски)


г) ;

ж)

© Кто справился с первым заданием? Где допущена ошибка?

© Кто справился со вторым заданием? Где допущена ошибка?

© Повторим ещё раз алгоритм сложения и вычитания дробей с разными знаменателями.


VI.Самостоятельная работа с проверкой по эталону

Формируемые УУД:

Познавательные: анализ, синтез, аналогия, классификация, подведение под понятие, выполнение действий по алгоритму

Регулятивные: контроль, коррекция, самооценка

Цель: проверить своё умение применять алгоритм сложения и вычитания в типовых условиях на основе сопоставления своего решения с эталоном для самопроверки.

А сейчас каждый проверит сам себя – насколько он сам понял алгоритм сложения и вычитания и может его применить. Для самостоятельного решения:

197 (а, б, д, з). Признак того, что вы работу закончили – поднятая рука. Получаете ключ для выполнения самопроверки.

После выполнения работы учащиеся проверяют свои ответы и отмечают правильно решённые примеры, исправляют допущенные ошибки, проводится выявление причин допущенных ошибок.

VII. Рефлексия деятельности на уроке

Цель: 1) зафиксировать новое содержание, изученное на уроке: алгоритм сложения и вычитания дробей;

2) оценить собственную деятельность на уроке;

3) поблагодарить одноклассников, которые помогли получить результат урока;

4) зафиксировать неразрешённые затруднения как направления будущей учебной деятельности: действия со смешанными числами;

5) обсудить и записать домашнее задание.

Формируемые УУД:

Познавательные: рефлексия способов и условий действия, контроль и оценка процесса и результатов деятельности, адекватное понимание причин успеха или неуспеха

Коммуникативные: аргументация своего мнения, планирование учебного сотрудничества

Организация учебного процесса на этапе 7:

Что нового узнали на уроке?

Какую цель мы ставили в начале урока?

Наша цель достигнута?

Что нам помогло справиться с затруднением?

Какие знания нам пригодились при выполнении заданий на уроке?

Как вы можете оценить свою работу?

Постановка домашнего задания с комментированием: алгоритм учить (раздать каждому), № 230, 231(а), 241(1,2), 233 (по желанию)





Список литературы:

1. Программа «Учусь учиться» курса математики для 5-6 классов средней школы по образовательной системе деятельностного метода обучения «Школа 2000…», М.: ACADEMIA АПКиППРО, 2007 г.

2. Г.В.Дорофеев, Л.Г.Петерсон Математика. 6 класс. Часть 1,2,3. – М.: Ювента, 2008 г.;

3 .Математика 5-6 классы. Методические материалы к учебникам Г.В.Дорофеева, Л.Г.Петерсон. – М, : Ювента, 2006 г.;

4. М.А.Кубышева Сборник самостоятельных и контрольных работа к учебникам математики 5-6 класса Г.В.Дорофеева, Л.Г.Петерсон. – М,: УМЦ «Школа 2000…», 2007 г.;





Дистанционное обучение педагогов по ФГОС по низким ценам

Вебинары, курсы повышения квалификации, профессиональная переподготовка и профессиональное обучение. Низкие цены. Более 7400 образовательных программ. Диплом госудаственного образца для курсов, переподготовки и профобучения. Сертификат за участие в вебинарах. Бесплатные вебинары. Лицензия.

Подробнее
Подписаться на новые
Используйте вашу учетную запись Яндекса для входа на сайт.
Используйте вашу учетную запись Odnoklassniki.ru для входа на сайт.
Используйте вашу учетную запись Google для входа на сайт.
Используйте вашу учетную запись VKontakte для входа на сайт.
@mail.ru
Используйте вашу учетную запись Яндекса для входа на сайт.
Используйте вашу учетную запись Odnoklassniki.ru для входа на сайт.
Используйте вашу учетную запись Google для входа на сайт.
Используйте вашу учетную запись VKontakte для входа на сайт.
@mail.ru
Используйте вашу учетную запись Яндекса для входа на сайт.
Используйте вашу учетную запись Odnoklassniki.ru для входа на сайт.
Используйте вашу учетную запись Google для входа на сайт.
Используйте вашу учетную запись VKontakte для входа на сайт.
@mail.ru