В вашем браузере отключен JavaScript. Из-за этого многие элементы сайта не будут работать. Как включить JavaScript?

8-800-1000-299

Программа курса "Решение задач с параметрами и модулями " для 10-11 класса

Светлана Резникова Светлана Резникова
Тип материала: Программа
просмотров: 3980    комментариев: 1
Краткое описание
         Курс "Решение задач с параметрами и модулями" разработан для учащихся 10 – 11 классов, рассчитан на 70 часов.  В заданиях ЕГЭ повышенного и высокого уровня модульные и параметрические задачи являются обязательными, но  решению таких задач в школе уделяется мало внимания. Эти задания единичны, разбросаны по разным годам обучения и у школьников отсутствует представление о  методике их решения. Этим и обусловлено введение в старшей школе подобного курса .

Описание
###### Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №20 ст. Брюховецкой муниципального образования Брюховецкий район Авторская программа для общеобразовательных школ курса: Решение задач с параметрами и модулями. 10 – 11классы
(автор-составитель С.Н.Резникова, высшая категория).







Пояснительная записка Основной задачей модернизации российского образования является обеспечение нового качества школьного образования, соответствующего требованиям изменившейся системы общественных отношений и ценностей. В связи с необходимостью формирования у учащихся компетентностного подхода возникла потребность в создании курса «Решение задач с параметрами и модулями» для развития целостной математической составляющей картины мира и для расширения возможностей учащихся по свободному выбору своего образовательного пути.
Данный курс разработан для учащихся 10 – 11 классов, рассчитан на 70 часов, обеспечивает возможность учитывать специфику возраста учащихся, уровень их развития, общеобразовательную подготовку, по предмету, индивидуальные интересы и склонности, образовательный запрос.
Математика является профилирующим предметом на вступительных экзаменах в ВУЗы по широкому спектру специальностей. Наряду с поступающими на математические отделения и в технические ВУЗы вступительные экзамены по математике должны сдавать будущие физики, химики, биологи, врачи, психологи, экономисты. В заданиях ЕГЭ повышенного и высокого уровня модульные и параметрические задачи являются обязательными. Как известно, решению таких задач в школе уделяется мало внимания. Эти задания единичны, разбросаны по разным годам обучения и у школьников отсутствует представление о методике их решения. Этим и обусловлено введение в старшей школе курса «Решение задач с параметрами и модулями». Цель курса -познакомить учащихся с некоторыми методами и приемами решения математических задач с параметрами и с модулями; -сформировать умения применять полученные знания при решении «нетипичных», нестандартных задач.
Задачи курса: -повысить теоретический уровень знаний учащихся по математике расширить и углубить представления учащихся о приемах и методах решения математических задач, — формировать математический стиль мышления на основе индивидуальных особенностей школьников, помочь овладеть рядом технических и интеллектуальных умений на уровне свободного их использования; — развить интерес и положительную мотивацию изучения математики.
— ликвидировать пробелы в знаниях и постараться решить общие проблемы: приучить к культуре вычислений и научить приемам самопроверки.
— содействовать преемственности среднего общего и высшего образования.
Отбор содержания программы курса основан на применении математических предметных знаний и умений школьников для решения задач повышенного уровня сложности по отдельным темам базового курса, введении дополнительных тем. Требования к уровню освоения учебного курса.
В результате изучения курса учащиеся должны знать: понятие параметра;
алгоритмы решений задач с параметрами;
зависимость количества решений неравенств, уравнений и их систем от значений параметра;
свойства решений уравнений, неравенств и их систем;
свойства функций в задачах с параметрами.
алгоритмы построения графиков модульных функций В результате изучения курса учащиеся должны уметь:
-решать уравнения, содержащие знак модуля, а так же тригонометрические, логарифмические, показательные уравнения, сводящиеся к модульным; -решать неравенства, содержащие знак модуля,тригонометрические, логарифмические и показательные неравенства, сводящиеся к модульным; — решать уравнения, неравенства, системы уравнений и неравенств с параметрами;
— определять количество решений параметрических задач
— владеть приемами самопроверки и самоконтроля при решении задач.
Методические рекомендации Курс «Решение задач с параметрами и модулями» дает примерный объем знаний, умений и навыков, которым должны овладеть школьники. Учащиеся должны научиться решать задачи более высокой по сравнению с обязательным уровнем сложности, овладеть рядом технических и интеллектуальных умений на уровне их свободного использования.
Одна из целей преподавания данного курса ориентационная – помочь осознать ученику степень значимости своего интереса к математике и оценить свои возможности. В экзаменационном материале задачам с параметрами и модулями уделяется немало внимания, однако наблюдения показывают, что эти задания вызывают у учащихся большие затруднения.
Для реализации целей и задач данного элективного курса предполагается использовать следующие формы занятий: лекции, практикумы по решению задач, самостоятельные работы. Занятия должны носить проблемный, исследовательский характер. Успешность усвоения курса определяется преобладанием самостоятельной творческой работы ученика. Ученики самостоятельно или в сотрудничестве с учителем должны выполнять различные задания. На занятиях организуются обсуждения результатов этой работы, предложенные решения должны оцениваться в соответствии с критериями оценивания заданий группы «С»
Формой итогового контроля может стать зачетная работа или защита собственного проекта.
Содержание курса (70 ч.) 1. Введение (2ч.)
Понятие параметра, применение, методы решения задач с параметрами

2. Линейные уравнения, неравенства, системы с параметром (3 ч.)
Линейные уравнения, уравнения, приводимые к ним. Дробно-линейные уравнения. Системы линейных уравнений и неравенств, содержащих параметр.

3. Квадратные уравнения, неравенства и системы (8ч.)
Квадратные уравнения. Соотношение между корнями квадратных уравнений. Квадратные неравенства. Взаимное расположение корней квадратного уравнения. Задачи на нахождение наибольших и наименьших значений. Системы уравнений и неравенств.

4.Исследование алгебраических выражений с модулями (11ч.)

Линейных и квадратные уравнения и неравенства, содержащих знак модуля- Алгебраические выражений с модулями. Рациональные уравнения, содержащие неизвестную под знаком модуля, их системы. Неравенства, содержащих неизвестную под знаком модуля, их системы. Метод возведения в квадрат. Графики функций с модулем
5. Графические приемы решения задач с параметрами (6 ч.)
Параллельный перенос. Поворот. Гомотетия. Координатная плоскость. Графики функций.

6. Определение числа корней уравнений в зависимости от параметра (4ч.)
Аналитический метод. Графический метод.
7. Метод замены (4ч.)
Введение одной новой переменной. Введение двух новых переменных. Тригонометрическая подстановка.

8. Иррациональные уравнения, неравенства и системы (8 ч.)
Различные методы решения иррациональных уравнений в зависимости от условия. Уравнения, приводимые к квадратным заменой переменных и др.

9. Показательные и логарифмические уравнения, неравенства и системы (10 ч.)
Методы решения. Нестандартные приемы решения. Использование свойств показательной и логарифмической функций.

10.Функциональные методы решения(4ч.)
Непрерывность функций. Ограниченность функций. Монотонность функций.
11. Решение комбинированных задач на использование различных свойств и методов (5ч.)

12. Нетрадиционные задачи, задачи группы «С» из ЕГЭ (5 ч.)

Планирование (2 час в неделю)

п/п

Тема занятия
Кол-во часов
В том числе
Форма контроля
лекции
практика
семинары
1 Введение.

2



Понятие параметра, применение.

1


Методы решения задач с параметрами

1


2 Линейные уравнения, неравенства, системы с параметром

3

Решение линейных уравнений, уравнений и систем линейных уравнений, приводимых к ним.

1



Дробно-линейные уравнения.


1


Системы линейных уравнений и неравенств, содержащих параметр.



1

3 Квадратные уравнения, неравенства и системы
8


тест
Нахождение значение параметра, при котором уравнение имеет 2 различных корня, 1 корень, не имеет корней;



1
Нахождение значение параметра, при котором уравнение имеет корни с разными знаками, с одинаковыми знаками; нахождение значение параметра, при котором уравнение оба корня меньше (больше) числа А.



1
Нахождение значение параметра, при котором уравнение оба корня лежат по разные стороны от числа А; оба корня лежат между числами А и В, по разные стороны отрезка АВ.



1
Решение задач на нахождение наибольшего и наименьшего значения



1

Решение уравнений, сводящихся к квадратным.


1

Решение систем квадратных уравнений.



1
Решение квадратных неравенств с параметром.

2
4 Исследование алгебраических выражений с модулями

11


тест
Решение линейных и квадратных уравнений и неравенства, содержащих знак модуля

1 1

Преобразование алгебраических выражений с модулями.


1

Решение рациональных уравнений их систем, содержащие неизвестную под знаком модуля.

1 1

Решение неравенств, содержащих неизвестную под знаком модуля, их системы.


1 1
Решение модульных задач методом
возведения в квадрат.

1
1





Построение графиков элементарных функций, содержащих знак модуля

1
1
5 Графические приемы решения задач с параметрами

6


Проверочная работа
Параллельный перенос.


1

Поворот.


1

Гомотетия.

1 1

Координатная плоскость.



1
Графики функций



1
6 Определение числа корней уравнения в зависимости от параметра

4


самостоят. работа
Аналитический метод.


1 1

Графический метод

1 1

7 Метод замены

4



Введение одной новой переменной.


1

Введение двух новых переменных.


1

Тригонометрическая подстановка.


2

8 Иррациональные уравнения, неравенства и системы
8



Иррациональные уравнения и неравенства

1 1

Решения иррациональных уравнений в зависимости от условия.


2

Уравнения, приводимые к квадратным заменой переменных


1

Решение иррациональных неравенств

1
1

Решение нестандартных иррациональных уравнений.
1
9 Решение показательных уравнений и неравенств с параметром.
10


тест

Методы решения показательных и логарифмических уравнений и неравенств с параметрами.

1 2 2

Нестандартные приемы решения.


1


Использование свойств показательной и логарифмической функций.

1 1 1

Решение логарифмических уравнений и неравенств с параметром.


1
10 Функциональные методы решения

4



Понятие о функциональных методах решения задач

1


Непрерывность функций.



1
Ограниченность функций.



1
Монотонность функций.



1
11 Комбинированные задачи с модулем и параметром
5 3
12 Нетрадиционные задачи, задачи группы «С» из ЕГЭ
5 5 тест
ИТОГО:
70 15 34 21

ЛИТЕРАТУРА ДЛЯ УЧИТЕЛЯ:
  • Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами. ООО «Илекса», 2003.
  • Корянов А.Г., Прокофьев А.А. Уравнения и неравенства с параметрами.Количество решений. www.alexlarin.narod.ru
  • Шарыгин И.Ф., Голубев В.И.Факультативный курс по математике. Решение задач. 10 класс.11 класс, «Просвещение». Москва .1991
  • Крамор В.С., Лунгу К.Н., Лунгу А.К. Математика. Типовые примеры на вступительных экзаменах. Москва. 2008.
  • Сборник задач по математике для поступающих во ВТУЗы. Под редакцией Сканави М. И., Москва. 1999.
  • Колесникова С. И. Математика. Решение сложных задач единого государственного экзамена. Москва. Айрис-пресс. 2005.
  • Лаппо Л.Д., Морозов А.В., Попов М.А. Математика. ЕГЭ. Издательство «Экзамен», Москва. 2011.
ЛИТЕРАТУРА ДЛЯ УЧАЩИХСЯ:
  • Лаппо Л.Д., Морозов А.В., Попов М.А. Математика. ЕГЭ. Издательство «Экзамен», Москва. 2011.
  • Корянов А.Г., Прокофьев А.А. Уравнения и неравенства с параметрами.Количество решений. www.alexlarin.narod.ru
  • Козко А.И., Панферов В.С. ЕГЭ 2011.Математика. Задачи С5. Задачи с параметром. Издательство МНЦМО. Москва 2011г.
  • Семенко Е.А.Крупецкий С.Л..Тестовые задания для подготовки к ЕГЭ — 2011 по математике. Издательство «Просвещение — Юг». Краснодар. 2011.


Пожаловаться 20 августа 2013
Файлы
Решение задач с параметрами модулями Резникова.docx
HTML Войдите для скачивания файлов
Решение задач с параметрами модулями Резникова.zip
Войдите для скачивания файлов
Обсуждение материала
  • Марина Гилярова
    22 августа 201312:32
    Марина Гилярова

    Прочитанная программа оставляет чувство незавершенности, потому как кроме планирования почти не содержит авторских идей (в пояснительной записке и в методических указаниях есть плагиат).
    Преподаватель предлагает нестандартную форму (для математики) проведения учебных занятий - семинар. В пояснительной записке не оговаривается в чем отличие семинарского занятия от практического, это необходимо указать в документе.
    Низкая уникальность текста понижает значимость публикуемого материала. Программа нуждается в доработке, добавлении дидактической составляющей в представленную программу.

Другие материалы автора

Отправка ошибки

Текст ошибки:
Комментарий:
Используйте вашу учетную запись Яндекса для входа на сайт.
Используйте вашу учетную запись Odnoklassniki.ru для входа на сайт.
Используйте вашу учетную запись Google для входа на сайт.
Используйте вашу учетную запись VKontakte для входа на сайт.
@mail.ru